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from Hy(x, 2) as follows:

1 0 a9
By, 5) = — (—261— - €2~> Hy(x,z) (Ta)
WeGE dz [¢)
and
1 i) [i]
L%, 2) = — (z 6q— — 62~> Hy(x, 2. (Tb)
wege ax [}

Let Hy(x, 2) and E.(x, z) be represented
as a superposition of plane waves in the form

1 =
9 == [ B et 60

1 o
Bin2) = 5 f E.¢, ef=de.  (8b)

The use of (8) in (2), (7a) and (1) gives

d? A=

[ +e]mes=o 9a)
— 1 R _
B9 = — (—ia -~ i) TLi5,2) OD)

wEge 0z
and

Ez(f, 0) = EO: (90)
where
B2 _ ¢2
=3+‘/__£ k>¢ 10)
+ivit — k2 kE<¢

The solution of (9a) is obtained as

(g, z) = Aets | Beée, 11

The application of the boundary conditions
(9¢) and E.(¢, ¢)=0 to (11) enables the
determination of 4 and B with the follow-
ing results:

wegeEge e

A=
27 sin £a(ei — desl)
i eka
. (12)

24 sin £a(ef + dead)
It follows from (8a), (11) and (12) that

_ iweelky ° 1

T 4x f _» Sin g
ek (—a) k)

'[612 — deof +

€1 -+ deaf”

The integrand of (13) is seen to have no
branch points or poles at = +k. The poles
of the integrand of (13) arise from the zeros
of sin #a and those of ef +4ef. The zeros of
sin & occur for {= i\/kz—(nvr/a)z, where
# is an integer greater than zero. If ¢ <w=/k,
these zeros are purely imaginary and the
corresponding contribution to Hy(x, z) will
not give propagating modes. For a<ux/k,
the only singularities of the integrand in
(13) are the poles given by the zeros of
af+ier. The zeros of gftief, which lie
on the proper Riemann surface defined by
(10), may be derived with the help of (4),
to be given by

,(x, )

] edede. (13)

_]62

= Fhve

(14)

€2

Correspondence

The contributions to Hy(x, z) given by the
residues of the poles (14) are obtained as

wéu! Ez{ Eo

e?|]

« gtz (l€al fea)V ertho(feal Vo1 (a—z)

Hy(x,5) =

2 sinh [kq(l

we(]] ezl Eo

+ _—

gtk (ﬁ—> Ve + ko EL(Z —a). (15)
€2 '\/61

It is evident that H,(x, z) given in (15)
will give rise to a mode propagating in the x
direction in the range of frequencies for
which ¢>0. From (4) and Fig. 2, it is seen
that >0 for 0<Q<R and <2< «. Also
on substituting (15) in (7a) it is seen that
E.(x, 2)=0. Further, it is seen from (4) and
Fig. 2, that &<0 for 0<Q<R and that
>0 for 2 <Q< ». Therefore, the first and
the second terms in (15) represent a TEM
wave propagating, respectively, in the posi-
tive and the negative x directions in the fre-
quency range 0 <Q<R, and vice versa for
Qz <Q < w0,
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Fig. 2—e, @ and ¢/e as a function of Q.

In the frequency ranges for which & >0,
it can be shown that /e >+/e/e. It fol-
lows, therefore, from (3) that kov/e >k.
Since k is the wavenumber in an unbounded
medium and k¢ve is that of the TEM
mode in the waveguide, it is clear that the
TEM mode is a slow wave. In contrast to
this, the TEM wave in the parallel-plate
waveguide filled with an isotropic dielectric
has the same phase velocity as in an un-
bounded medium.

It is well known that for the TEM mode
in a parallel-plate waveguide filled with an
isotropic dielectric, the field components are
constant in amplitude in any cross section
of the waveguide. But, for the TEM mode
(15) obtained when the parallel-plate wave-
guide is filled with a gyrotropic dielectric, it
is seen that for the first term in (15) the
amplitude decreases exponentially from the
bottom to the top plate whereas in the sec-
ond term there is an exponential increase in
amplitude.

As the distance @ between the top and
the bottom plates is increased, the infinity
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of higher order m modes given by the poles
§=t~k—
oue and, at the same time, the amplitude of
the exponentially growing wave given by the
second term in (15) falls off exponentially.
Finally when the top plate is removed to in-
finity, the second term in (15) vanishes, the
first term becomes the unidirectional sur-
face wave along the bottom plate and the
totality of the higher order modes combine
to give the space wave [1].

In conclusion, it is appropriate to men-
tion that a number of examples in the theory
of propagation of electromagnetic waves in
magnetoplasma slabs may be found in the
literature such as in [2].
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Boundary Excitation of Waveguides
Containing Anisotropic Media*

Several methods can be utilized to
launch electromagnetic waves along an
ionized column contained in a cylindrical
duct. An often used one is shown in Fig. 1
where the waveguide 1is aperture-coupled
to a surrounding resonant cavity. In this
configuration, the fields inside the wave-
guide are produced by boundary excitation,
and the fields are uniquely determined by
the assignment of the tangential component
of E in the aperture. It is our purpose to
present explicit equations for the various
field components in terms of the value of
Evang. The contribution from the volume
sources J and J» is also included for the
sake of completeness. The detailed deriva-
tion follows the mecthods of Bresler and
Marcuvitz!? and is givern elsewhere.®

To achieve a satisfactory degree of gen-
erality, we assume (Fig. 2) that the wave-

* Received June 7, 1963.
1A, D Bresler and N. Marcuvitz, “Operator
Methods in FElectromagnetic Ifield Theory,” Poly-
technic Inst. of Brooklyn, Broollyn, N. V., Res. Rept.
IB 425 and PIB-493; 1956 and 1957.

Bresler, G. H. Joshi and N. Marcuvitz,
“Orthogonahty properties for modes in passive and
active uniform wave guides,” J. Appl. Phys , vol. 29,
pp. 794-799, May, 1958,

3 J. Van Bladel, “Boundary excitation ol wave-
guides containing anisotropic media,” Tjans. Royal
ITnst. of Technol., Stockholm, vol. 210 (Elec. Engrg.
10}, pp. 1-23; June, 1963.
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Fig. 1—A method of launching electromagnetic waves
along an ionized column, using aperture coupling
to resonant cavity.

Fig. 2—Boundary-excited waveguide containing
a plasma column.

guide is of arbitrary cross section, is excited
through an aperture 4 of arbitrary shape
and contains a “Hermitian” medium of
tensorial characteristics

e(x,y) = & + esuu;
p’(xy y) = M + MU, (1)

Here, ¢ and u; are transverse Hermitian
tensors. Generalization to non-Hermitian
parameters is fairly easy, and involves use
of adjoint transformations and bi-orthogonal
sets of eigenvectors.

The z components of the fields can be
eliminated from Maxwell’'s equations by
use of the relationship

ad
curl A = (grad; 4,xu,) — - (Axu.)

+ [din (AgXuz)]uz (2)

where the subscript ¢ indicates differentia~
tion with respect to the (transverse) x, y
coordinates. One obtains, for the transverse
componerits,

1
grad, [-——— div, (jH,xuz):l
Jwes

. . . OFE;
+ jouwx(usjH;) — J N

J . .
= grad; (—> - azX]Jmt (3)
we;

1
grad, [»—— div, (Etxuz):l
Jwus

L I(H)

+ joux(e;  Ey) — j———
Iz

Jm:
= grad; ]—) — ux];. @
3

These equations can be put in the more
concise form
t

. . OE,
LGH) —j—~=¢
7]

a
ME, —j E(]Ht) = jé )]
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where ¢ and ¢ are given vectors. In four-
vector notation:

) 5 Ga) - ) o

The normal modes, in particular, are source-
less field distributions whose z dependence
is of the form e/72, We shall write their trans-
verse components as e(x, v)e’* and h(x,
y)er", Evidently

r (;) +v (]‘;) = L@ 4@ =0 (O

where e and A satisfy the boundary condi-
tions

e =0

div (w,xh) = — jwese, = 0 } on (). (8

AVem |

Tag TSl o Fen
dlom
dV

dng

f T (6% am)odS —

- jam Tom =

al ﬂm

dV»,m

dlym

dz — JvmVym = =~ N‘ym f] &%y

- j'Ym[ym =

Vot
P N*')m fsJZ(e*”"):dS B
ALy
TV = &*mdS —

Following Bresler and Marcuvitz, we utilize
a Hermitian scalar product

(@, ) = f [—a*- (w.xd) + B*: (u:xc)]dS (9)

© = (;—‘Z) end 8= (;)

Fundamental for our analysis is the rela-
tionship

where

(La, 3) = (&, LB)
+ f ~—b* div (uxd) — —d div (u,xb*)
weg
+ — a* div (u.xc)
wius
1
— —— ¢, div (uxa*) | dC (10)
wus3

in which the surface integrals are principal
values if e; or p; happen to vanish at points
inside the cross section. From (10) it follows
immediately that the eigenvectors em and
a, with eigenvalues vy. and v, satisfy the
orthogonality condition

(vm* — o) <am, en> = 0. (11

2 faen

Nam

#):AS —
): N.

V*—f]m:(h*«/m)zds -
LY Cym S

September

Ihe fOuI'VeCtOI
j 14

can be expanded in terms of the complete
set of four-eigenvectors

Jhym
The expansion can be written in trans-
missionline form as

Er = 2 Van(2)€am + 2 Vom(2)epm

+ 22 Vim@em + 2 Vim* (D) eym*

= 2~ Lan(®) (FBram) + 22 Tpm(2) (Ghrzm)

+ 2 L@ (iBym) + 22 Irm* (2) () (12)
where o, 8. and vy, denote respectively a
real, an imaginary and a general complex
eigenvalue. By utilizing (10) and (11) we

arrive at the following basic equations for
the expansion coefficientst

(B*am)ede 13)

2
*am) A4S — T f E, (b*zxm) 2dc (14)

2
+ Bl = + = f T.(6%m) ds+— f T ® BsdS — —— f Ebs)de  (15)

BV = — —— f T+ ¥ndS — —— f Tone(Rtgm) S — — f E(Bande  (16)

f T B (Bmt)ede (17)
S

2
z(h*vm*>zdS‘N “va(h*'ym*>zd€ (18)
ym Y ¢

-h*

ym)ode (19)

m)24¢. (20)

A normalization factor such as Ny, stands
for
/eym*
Ay

€ym \
Fbom !

Egs. (13) to (20) represent our main result,
The second members show clearly the sep-
parate contributions from the boundary
and volume sources. The form of the
equations is seen to be particularly simple;
it is only in the computation of the eigen-
values and eigenvectors that the anisotropies
and inhomogeneities of the medium give
rise to difficulties. We notice that a complete
solution of the differential equations re-
quires consideration of the boundary con-
ditions at the terminal surfaces S and
(or) S;.
J. Van BrapeLf
Division of Theor. Electr. Engrg.
Royal Inst. of Technology,
Stockholm, Sweden

4 (e*yme). standsfor the z component of the com-
plex conjugate of eynm», eigenvector relative to vu,*
(which is an elgenva‘iue if vy is an eigenvalue).

+ On leave from the Department of Electrical En-
gineering, University of Wisconsin, Madison,



