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from Hu(.v, .2) as follows:

1
E.(x):) =— ( )–iEI~–E2+HJ(x, z) (7a)

C!J6JE

and

(E.(tt, z) =:- J+&r(x)z). (h)
cw@

Let H.(x, z) and EZ(x, z) be represented

as a superposition of plane waves in the form

The use of (8) in (2), (7a) and (1) gives

(9a)

and

E=(r, o) = Eo, (9C)

where

The solution of (9a) is obtained as

77u(~, z) = Aetgz + Be-’t’. (11)

The application of the boundary conditions

(9c) and l?a(~, a) =0 to (11) enables the

determination of A and B with the follow-
ing results:

f
A=–

cowE&’ o

2i sin @(el& – ie,~) ‘

B=–
mqeim~”

2i sin $a(qt + &&~ “

It follows from (8a), (11) and (12)

(12)

that

f
Ado m 1

H.(x, z) = ~ —
-. sin &2

“[
ett(mz)

—– +
1

IfY2_ elr.~f. (13)
E,t — iq$- ~li + i62$-

The integrand of ( 13) is seen to have no

branch points or poles at t= + k. The poles
of the il]tegraud of (13) arise from the zeros
of sin ga and those of el $ ~ ie~f. The zeros of

sin @ occur for c = + ~kz —(mr/a)2, where
tz is an integer greater than zero. If a < m/k,
these zeros are purely imaginary and the

corresponding contribution to 17V(X, z) will

not give propagating modes. For a < zi-/k,
the only singularities of the integrand in
(13 ) a-e the poles given by the zero. of

e~$ + ie~~. The zeros of qg + &Z~, which lie

on the proper Riemann surface delined by

(10), may be derived with the help of (+),

to be given by

Correspondence

The contributions to H.(x, z) given by the

residues of the poles (14) are obtained as

‘ =+++]

e–ihm ()$: ~z+ ko-&(z – a). (15)

It is evident that Hti(x, z) given in (15)

will give rise to a mode propagating in the x

direction in the range of frequencies for
which el >0. From (4) and Fig. 2, it is seen

that q> Ofor O< fi<Rand f?Z<fl<~. Also
on substituting ( 15) in (7a) it is seen that

E.(x, z)= O. Further, it is seen from (4) and
Fig. 2, that q <O for 0< fl <R and that

q >0 for fk < Q < @. Therefore, the first and
the second terms in (15) represent a TEM
wave propagating, respectively, in the posi-

tive and the negative x directions in the fre-
quency range 0< fl <R, and vice versa for
fl*<il<m.
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In the frequency ranges for which .1>0,

it can be shown that & > tic/e,. It fol-

lows, therefore, from (3) that ko~~ >k.
Since k is the wave:umber in an unbounded
medium and kO~el is that of the TEM

mode in the waveguide, it is clear that the
TEM mode is a slow wave. In contrast to

this, the TEM wave in the parallel-plate
waveguide filled with an isotropic dielectric
has the same phase velocity as in an un-
bounded medium.

It is well known that for the TELI mode
in a parallel-plate waveguide filled with an

isotropic dielectric, the fieId components are
constant in amplitude in any cross section

of the waveguide. But, for the TEM mode
( 15) obtained when the parallel-plate wave-
guide is filled with a gyrot ropic dielectric, it
is seen that for the first term in (15) the
amplitude decreases exponentially from the

bottom to the top plate whereas in the sec-
ond term there is an exponential increase in
amplitude.

.% the distance a between the top and

the bottom plates is increased, the infinity
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of higher order modes given by the poles
~= + ~k~– (nrr/a)’ will be included one by

one and, at the same time, the amplitude of

the exponentially growing ~tave gi~en by the

second term in (15) falls off exponentially.
Finally when the top plate is removed to in-

finity, the second term in (15) vanishes, the

first term becomes the unidirectional sur-
face wave along the bottc,m plate and the

totality of the higher order modes combine
to give the space wave [1].

In conclusion, it is appropriate to men-

tion that a number of examples in the theory

of propagation of electromagnetic waves in
magnetoplasma slabs may be found in the

literature such as in [2].
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Boundary Excitation of Waveguides

Containing Anisotropic Media*

Several methods can be utilized to
launch electromagnetic wal-es along an
ionized column cont~inecl in a cylindrical
duct. An often used one k shcnvn in Fig. 1

where the wavegu ide is aperture-coupled
to a surrounding resonant cavity. In this

configuration, the fields inside the wave-

guide are produced by boundary excitation,

and the fields are uniquely determined by

the assignment of the tangential component

of E in the aperture. It is our purpose to
present explicit equatiom for the various

field components in terms of the value of
l?,~.e The contribution from the volume

sources J and Y., is also included for the
sake of completeness. The detailed deriva-
tion follows the methods of Bresler and
Marcuvitz’2 and is given elsewhere.2

To achieve a satisfactm-y degree of gen-
erality, we assume (Fig. 2 ) that the wave-
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Fig. 1—A method of launching electromagnetic waves
along an ionized column, using aperture couphng
to resonant cawty.

Fig. 2—Boundary-excited waveguide containing
a plasma column.

guide is of arbitrary cross section, is excited
through an aperture A of arbitrary shape
and contains a “Hermitian” medium of
tensorial characteristics

J& y) = p! + mu.%. (1)

Here, et and p~ are transverse Herruitian

tensors. Generalization to non-Hermitian

parameters is fairly easy, and involves use
of adjoint transformations and hi-orthogonal

sets of eigenvectors.
The z components of the fields cau be

eliminated from Maxwell’s equations by
use of the relationship

curl A = (grad ~.4 ~xu,) – & (.4txu,)

+ [div, (ALxuJ]u, (2)

where the subscript t indicates differentia-

tion with respect to the (transverse) x, y
coordinates. One obtains, for the transverse
components,

[
1

gradt — div, (E,xu,)
ju.us 1

F)(jH,)
+j.u.x(., . E,) – jT

where p and d are given vectors. In four-

vector notation:

The normal modes, in particular, are source-

Iess field distributions whose z dependence

is of the form ei~’. We shall write their trans-

verse components as e(x, y)e]~z and lz(z,
y)e~?z. Evidently

‘(;) +’(;) =L(a) + ?(a) = o (7)

where e and h satisfy the boundary condi-

tions

ec=O

div (u,xh) = — jcoewz = O I
on (c). (8)

The four-vector

Et

()jH,

can be expanded in terms of the complete

set of four-eigenvectors

()

e?m

jhym “

The expansion can be written in trans-
missionline form as

Et = ~ Vain(z)e.~ + z V@(~) e@

+ X V,m (~)e7m+ z V7m*(z)e7m*

H, = ~ Ire(;) (jhm) + ~ &&) (jh:m)

+ ~ ~w(z) (~%n) +Z ~wn*(z) (jhw”) (12)

where am, & and -yn denote respectively a
real, an imaginary and a general complex

eigenvalue. By utilizing (10) and (11) we
arrive at the following basic ea uations for

the expansion coefficie~ts$ ‘

(13)

(14)

(15)

(16)

(17)

(18)

Following Bresler and Nfarcuvitz, we utilize

a Hermitian scalar product

(w, Q) = J [–a’. (ugxcf) + b“: (u:xc)]dS (9)

where

()a ()c(K= and L3=
jb jd “

Fundamental for our analysis is the rela-

tionship

(La, Q) = (a, .DJ)

+ fC [-& fb” div (u,xd) – ~ d. div (u.xb*)

+ ~ a.” div (U,XC)

()jJ’”3 – uZxJt.= grad~ —

1
(4) – ~ G.cfiv (u.xa’) dc

%JJ3
wJ3

These equations can be put in the more

concise form

,$(jH,)-j~=Q

9’?Wt – j ~ (jH,) = jd (5)

(lo)

in which the surface integrals are principal

values if et or M happen to vanish at points
inside the cross section. From (10 ) it follows
immediately that the eigenvectors am and
an with eigenvalues ~~ and ~. satisfy the
orthogonality condition

(Tin” – -Y.)<% %> = 0. (11)

A normalization factor such as Ny., stands

for

/ev%* evm \

\jhT# jh,~ /”

Eqs. ( 13) to (20) represent our main result.

The second members show clearly the sep-
parate contributions from the boundary

and volume sources. The form of the

equations is seen to be particularly simple;
it is only in the computation of the eigen-

values and eigenvectars that the anisotropies
and inhomogeneities of the medium give
rise to difficulties. We notice that a complete
solution of the differential equations re-
qu ires consideration of the boundary con-
ditions at the terminal surfaces S, and
(or) S,.
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